Banyak rumus dalam matematika, sains, dan teknik yang menggunakan π, yang menjadikannya salah satu dari konstanta matematika yang penting. π adalah bilangan irasional, yang berarti nilai π tidak dapat dinyatakan dalam pembagian bilangan bulat (biasanya pecahan 22/7 digunakan sebagai nilai pendekatan π; namun sebenarnya tiada satupun pecahan yang dapat mewakili nilai eksak π.). Oleh karena itu pula, representasi desimal π tidak akan pernah berakhir dan tidak akan pernah memiliki pola angka tertentu yang permanen.
Digit-digit desimal π tampaknya terdistribusikan secara acak, walaupun sampai sekarang hal ini masih belum dibuktikan. π adalah bilangan transendental, yakni bilangan yang bukan akar dari polinom-polinom bukan nol manapun yang memiliki koefisien rasional. Transendensi π memiliki implikasi pada ketidakmungkinan teka-teki matematika kuno "mengkuadratkan lingkaran dengan hanya menggunakan jangka dan penggaris" untuk dapat dipecahkan.
Karena π adalah bilangan transendental, maka
tidaklah mungkin mengkuadratkan lingkaran dalam langkah-langkah
berhingga dengan menggunakan penggaris dan jangka
Selama beribu-ribu tahun, matematikawan telah berusaha untuk memperluas pemahaman akan bilangan π. Hal ini kadang-kadang dilakukan dengan menghitung nilai bilangan π hingga keakuratan yang sangat tinggi. Sebelum abad ke-15, para matematikawan seperti Archimedes dan Liu Hui menggunakan teknik-teknik geometris yang didasarkan pada poligon untuk memperkirakan nilai π. Mulai abad ke-15, algoritme baru yang didasarkan pada deret tak terhingga merevolusi perhitungan nilai π. Cara ini digunakan oleh berbagai matematikawan seperti Madhava dari Sangamagrama, Isaac Newton, Leonhard Euler, Carl Friedrich Gauss, dan Srinivasa Ramanujan.
Pada abad ke-20 dan ke-21, para matematikawan dan ilmuan komputer menemukan pendekatan baru yang apabila digabungkan dengan daya komputasi komputer yang tinggi, mampu memperpanjang representasi desimal π sampai dengan lebih 10 triliun (1013) digit. Penerapan bilangan π dalam bidang sains pada umumnya tidak memerlukan lebih dari 40 digit desimal π, sehingga motivasi utama dari komputasi ini didasarkan pada keingintahuan manusia. Perhitungan ekstensif seperti ini juga digunakan untuk menguji kemampuan superkomputer dan algoritme perkalian presisi tinggi.
Karena definisi π berhubungan dengan lingkaran, ia banyak ditemukan dalam rumus-rumus trigonometri dan geometri, terutama yang menyangkut lingkaran, elips, dan bola. π juga ditemukan pada rumus-rumus bidang ilmu lainnya seperti kosmologi, teori bilangan, statistika, fraktal, termodinamika, mekanika, dan elektromagnetisme.
Keberadaan π yang sangat umum menjadikannya sebagai salah satu konstanta matematika yang paling luas dikenal, baik di dalam maupuan di luar kalangan ilmuwan. Hal ini terbukti dari beberapa penerbitan buku yang membahas bilangan ini, perayaan hari Pi, dan pemberitaan-pemberitaan yang luas manakala perhitungan digit π berhasil memecahkan rekor perhitungan. Beberapa orang bahkan dengan kerasnya berusaha menghafal nilai bilangan π dengan rekor 67.000 digit.
Seorang pemusik menciptakan lagu yang nada-nadanya berasal dari urutan angka pada konstanta π hingga 122 desimal. David menambahkan nada-nada di bagian kiri pianonya supaya mengisi dengan harmonisasi nada.
Sumber : http://versesofuniverse.blogspot.com/2015/01/bilangan-pi.html
Tidak ada komentar:
Posting Komentar